大师讲坛

上海交通大学始终秉持“自强首在储才,储才必先兴学”的信念,把人才培养作为办学的根本任务,以“培养第一等人才、砥砺第一等品行”为教育理念,精勤进取,笃行不倦,培养了一批又一批大师级栋梁之才。为了建立本校师生和学术大师之间学术交流的桥梁,上海交通大学于2012年4月创办“大师讲坛”,以“研其精者,道其深;博其大者,致其远”为主题,秉持“学以致用,知行合一”的宗旨,邀请国内外学术大师、著名科学家和学者走进讲坛,讲述科学知识、科学道德、科研精神和研究方法,与交大师生面对面交流,分享科学智慧和人生经验,让交大师生时刻感受“转身遇见大师”的学术氛围。

云展厅链接
讲坛概况

“大师讲坛”自成立以来,始终秉持高端性、开放性特色和学以致用、广开思路的原则,由“国家最高科技奖获得者”王振义院士首讲,截至2022年4月(十周年),已开办讲座169场,邀请了160余位国内外著名专家学者前来做客,与近十万人次交大师生互动交流。这些学术大师包括137位国内外科学院/工程院院士,其中,诺贝尔奖、菲尔兹奖、图灵奖和沃尔夫奖获得者共27位。“大师讲坛”采用访谈与讲座相结合的形式进行,营造轻松、互动的学术氛围,以大师典范指引青年学子的人生与学术航向,以家国情怀鼓励青年学子潜心科研,服务国家发展。

多年来,“大师讲坛”始终与交大同向同行,为交大师生提供了一个包容开放、自由平等的学术交流平台。未来,“大师讲坛”将继续以传承文明、探求真理为使命,打造更加丰富多元的科学盛宴。传播学术思想,弘扬科学精神,为交大校园营造出浓郁的科研学术氛围,为交大学子们打开通向大师成才之道的大门,为祖国科学事业孕育未来的栋梁之材。

讲坛预告
22
2024-07
【大师讲坛】第227期:高分子膜用于分子的精准筛分 Molecular Separations in Organic Solvents with Polymer Membranes
在石油、化工、制药等工业应用中,45-55%的能耗等用于分离过程中。相较于传统分离过程如蒸发、精馏等,膜分离过程更加地节能、环保、高效。但长久以来,对膜分离层厚度以及其孔径的精准调控一直都是个难题。本报告中,通过控制界面聚合过程,膜分离层的厚度被降到10纳米以下,实现了溶剂的通量成数量级地增长。并且,通过对单体进行改性,加入疏水嵌段,让膜由亲水变为疏水,使其在原油分馏中同时达到了高通量和高选择性。另外,通过利用多孔材料(如有机分子笼、大环分子等)构建膜结构,并使之在膜内有序排列,实现了对膜孔径在埃米尺度的精准调控,拓展了膜在精细分离过程(如药物提纯)中的应用。 The chemical separations often account for 45-55% of the total industrial energy consumption in petroleum, chemical engineering, pharmaceuticals and other industrial applications. Compared to conventional separation process (i.e., distillation and rectification), membrane separation process will be more energy-saving, environmental-friendly, and high-efficiency. However, to precisely regulate the thickness and pore size of membranes has long been a great challenge in this field. In this report, the manipulation of the film thickness down to ~10 nanometers achieved permeance one order of magnitude higher than that of current state-of-the-art polyamide membranes while retaining comparable size- and class-based separation. Meanwhile, with the introduction of hydrophobic block, the hydrophilic membrane surface turned into hydrophobic surface, achieving much higher permeance and selectivity in the fractionation of light crude oil. Additionally, the porous material-based building blocks have been applied for the creation of well-defined membrane with aligned pore structure, further realizing the precision separation at the sub-nanometre scale, which expands their potential for application in crude oil fractionation, purification of drugs, etc.
Andrew Livingston
英国皇家科学院院士、英国皇家工程院院士、Queen Mary University of London副校长
27
2024-03
【大师讲坛】第209期:Solid-state batteries: a challenge of interfaces
Solid-state batteries, in which the liquid electrolyte used in today’s lithium-ion batteries is replaced by a solid, could offer a leap forward in the performance and safety of batteries. They are regarded by many at the likely next big thing in battery tech. However, there are challenges facing solid-state batteries that require fundamental understanding of the science underpinning their operation. For example, at the negative electrode a Li metal anode is desirable to achieve high energy densities. On discharging such a cell, voids form at the Li/solid electrolyte interface due to limited Li metal creep/diffusion at practical stack pressures and practical discharge currents. These voids accumulate on cycling, leading to detachment of the Li anode and consequently high local currents during charge, triggering growth of dendrites (filaments of Li metal that penetrate the ceramic electrolyte). Li dendrites can penetrate ceramics even with high relative densities. When they reach the cathode (positive electrode) the cell short-circuits and fails catastrophically. The positive electrode also presents interfacial challenges. It is a composite of the active material, e.g. NMC 811, the solid electrolyte and carbon. Volume changes of the active material on cycling, reactivity at the interfaces and the need to ensure effective ion and electron transport throughout the composite are all problems to be addressed. I shall discuss some of these interfacial challenges as time permits. Combined operando X-ray CT and modelling reveals insights into voiding and dendrites. Dendrite initiation, then propagation across the solid electrolyte are revealed as separate processes, leading to different conclusions as to how they might be mitigated. Crack deflection to mitigate shorts will be considered as will contouring of the interface. There is a lot of interest in interlayers placed between the solid electrolyte and anode current collector. Carbon-based interlayers will be discussed, revealing the structural changes within the interlayer and Li deposition behaviour during the processes of charge and discharge. The performance limits and failure mechanisms of the interlayer will be considered. At the cathode, strategies for accommodating volume changes on cycling involving designer polymers are under investigation and will be presented if I have time.
Peter G. Bruce
Foreign member of the Chinese Academy of Sciences,Member of the Royal Society,Member of the European Academy of Sciences
十周年庆
十年庆典录像
十年庆典宣传片
云展厅短视频
十年庆典暖场视频