作者: 武同锁、郭锦
定价: 128.00
出版社: 科学出版社
版次: 1
出版时间:2021年12月
开本: 16
装帧: 1042.00
页数: 254
ISBN编码:978-7-03-070302-6
购买链接:https://item.jd.com/13592936.html
内容介绍:
全书共分为7章。第一章包含了关于深度、Krull维数以及Cohen-Macaulay性质(以下简称CM性质)等的一些核心结果或者基本事实;其中关于标准代数的CM性与分次CM性的等价性、序列CM模的代数描述两部分内容反映了本书的特色。第二章讨论单纯复形的基本事实,特别是描述了两个代数不变量(由复形构造的面环的深度、Krull维数)与复形的拓扑不变量(维数)之间的确切关系)。第三章讨论复形的shellable性质,特别是详细推演其用restriction map进行的等价刻画、与d-可分性之间的等价关系,这是对于shellable性质的深刻描述和讨论。第四章介绍了如何由拓扑复形构造代数链复形,介绍相应的导出同调群,并重点介绍了近代文献中有较多应用的Koszul复形以及来自单项式理想的三种常用代数复形(或正合列)的详尽构造。第五章是本书的核心和重点,全面深刻地介绍CM复形、shellable与CM的关系、线性预解式与线性商以及如何从图出发构造好的拓扑与代数复形。第五章包含了作者最新的研究成果,也综述了多个研究专题(包含作者和业界核心专家的成果)。第六章主要介绍Bejorner等人的近期成果,主要是讨论如何从偏序集出发构造系列的shellable复形等。第七章是专门讨论正则度的,既包含中心的传统结果,也包含了作者等人的近期研究成果。
目录:
Preface
Notations
Chapter 1 Preliminaries on Cohen-Macaulay Rings and Modules ..................................1
-
- Jacobson radical and NAK Lemma..................................2
- Modules with finite lengths..................................3
- On graded rings and minimal graded free resolution..................................6
- Cohen-Macaulay rings and Cohen-Macaulay Modules..................................11
- Dimension, height and Krull’s PI theorem..................................11
- Depth Lemma and ..................................14
- Local rings: Krull dimension and a system of parameters..................................17
- Cohen-Macaulay modules and Cohen-Macaulay rings: local case................22
- Cohen-Macaulay rings: non-local case..................................26
- Cohen-Macaulay rings: graded case..................................28
- Gorenstein rings..................................34
- Sequentially Cohen-Macaulay modu1es..................................35
Chapter 2 Abstract Simplicial Complexes....................................40
-
- Definitions, fundamiental properties and examples..................................40
- Abstract simplex and abstract simplicial complex..................................40
- 0ther notations and symbols on a simplicial complex..................................41
- Fundamental operations on sub-complexes and geometric realization of an abstract simplicial complex..................................42
- The facet ideal and Stanley-Reisner ideal of a simplicial complex ..................................47
- Monomial ideals and ideal operations.................................47
- The Stanley-Reisner (nonface) ideal and facet ideal ................................47
- The Alexander dual simplicial complexofand related properties.................................48
- Square-free monomial ideal : its nonface complex, facet complex; and -ideals.................................54
- Relative simplicial complexes and relative nonface ideals.................................55
- Definitions, fundamiental properties and examples..................................40
Chapter 3 Shellable Simplicial Complexes.................................57
-
- Destriction and examples.................................57
- Restriction maps and Rearrangement Lemmas.................................60
- -skeleton .................................64
- Shifted, vertex-decomposable and shellable conditions for a simplicial complex.................................66
- Shellable and -decomposable.................................69
Chapter 4 Chain Complex Reduced from a Simplicial Complex and Koszul Complexes.................................73
-
- The chain complex reduced from an abstract simplicial complex and reduced homology groups.................................74
- Koszul complexes of lengths 1 or 2.................................79
- Koszul complexes of geueral length.................................80
- Koszul complexes: a summary of main results.................................83
- Other resolutions and complexes of monomial ideals.................................84
- The Taylor resolution.................................84
- The Scarf complex.................................86
- The Lyubeznik resolutions.................................89
Chapter 5 (Sequentially) Cohen-Macaulay Simplicial Complexes and Graphs.................................91
-
- Cohen-Macaulay simplicial complexes.................................92
- Fundamental properties and characterizations.................................92
- Connected in codimension one.................................97
- Minimal Cohen-Macaulay simplicial complexes and shelled over.................................100
- Matroid complexes.................................104
- Pure shellable, constructible, and Cohen-Macaulay.................................107
- A graded ideal with linear quotients and shellable complexes.................................111
- A graded ideal with linear quotients.................................111
- Shellable complexes and monomial ideals having linear quotients.................................115
- Powers of edge ideals of graphs and regularity.................................118
- A polymatroidal monomial ideal has linear quotients.................................119
- Strongly shellable simplicial complexes.................................120
- sCM simplicial complexes and sCM graded modules.................................121
- Clique complex , edge ideal and cover ideal ................................123
- Vertex-decomposable graphs and shellable graphs.................................124
- Minimal verex covers and standard irredundant primary decomposition of I(G) .................................127
- Cohen-Macaulay graphs and well-covered graphs.................................129
- Shellable clutters.................................131
- Clutters with the free vertex property.................................132
- Chordal clutters.................................133
- Some particular classes of graphs.................................133
- Bipartite graphs.................................133
- Boolean graphs are Cohen-Macaulay 138
- Cactus graphs and classes of vertex-decomposable graphs.................................143
- Cameron-Walker graphs.................................146
- Chordal graphs.................................147
- -simplicial complexes and -ideals of kind .................................150
- Gap-free graphs and related -free graphs.................................174
- Graphs whose complements are -partite.................................176
- Graph expansions and graph blow ups.................................185
- Interlacing graphs and triangular graphs .................................188
- Vertex clique-whiskered graphs and their generalizations .................................189
- 1-decomposable graphs.................................202
- Cohen-Macaulay simplicial complexes.................................92
Chapter 6 Shellable Simplicial Complexes from Posets.................................204
-
- Preliminaries.................................204
- A bounded, locally upper-semimodular poset is pure shellable.................................205
- EL-labeling of a poset and EL-shellable graded posets.................................209
- Admissible lattices and SL-shellable poset.................................213
- CL-shellable poset and recursive atom orderings.................................215
- Rooted interval and CL-shellable poset.................................216
- Recursive atom orderings.................................218
Chapter 7 Betti Numbers and Castelnuovo-Mumford Regularity.................................222
-
- Calculating Betti numbers via the functor Tor.................................222
- Polarization keeps the Betti numbers and regularity unchanged.................................224
- Hochster’s Formula and other two reformulations.................................226
- Graded Betti numbers of graphs: some general reults.................................230
- Splittable monomial ideals and Betti splitting.................................231
- Miscellanies Results on Betti Numbers.................................232
- The join complex of simplicial complexes.................................232
- Graded -modules with pure resolutions.................................233
- Stable monomial ideals.................................233
- Monomial ideals with linear quotients.................................233
- Vertex-decomposable simplcial complexes and multiple clique-whiskered graph.................................234
- Chordal graphs 235
- Castelnuovo-Mumford regularity of graphs.................................235
- A brief survey of some general results.................................235
- Graphs whose edge ideals have regularity less than 4.................................237
References.................................240
Index.................................248