【大师讲坛】第201期:20-Year Dancing with Palladium and C–H bonds: From Curiosity to Industrialization 和 Interfacing molecules with 2D materials: sophisticated structures enabling complex functions

2023-10-24 09:00:00-11:30:00
霞光楼200号报告厅

(1)报告题目:20-Year Dancing with Palladium and C–H bonds: From Curiosity to Industrialization

报告摘要:
The widespread presence of C–H bonds at various sites of synthetic substrates renders C–H activation the most powerful platform for developing catalytic reactions for synthesis. To realize the full potential of C–H activation for synthesis, four fundamental challenges must be addressed: developing diverse carbon-carbon and carbon-heteroatom bond forming reactions of diverse poorly reactive native substrates (ReactivitY); enantioselective C–H activation reactions via asymmetric metalation of C–H bonds (EnantioselectivitY); site selective metalation and functionalization of remote C–H bonds (Site-selectivitY); achieving catalytic cycles using sustainable oxidants such as molecular oxygen, aqueous hydrogen peroxides as the terminal oxidants (SustainabilitY). Despite century-long efforts, seeking solutions to these problems has met with limited success due to a fundamental challenge: lack of ligands that can accelerate C–H activation reactions.
By combining the weak coordination (entropy) from substrates and ligand acceleration (enthalpy), we have made substantial progress towards addressing these four challenges. Most notably, six generations of bi-functional ligands (MPAA, APAQ, APAO, MPAAm, MPAThio, Pyridine-Pyridone) have been developed to enable a wide range of enantioselective and site-selective C–H activation reactions of diverse classes of native substrates. In parallel, we have realized C–H hydroxylation using molecular oxygen or aqueous hydrogen peroxide as the terminal oxidants, paving the way for large-scale industrialization. Most recently, we have extended site-selective C–H activation to multiple methylene C–H bonds for ring formation through a stitching strategy.

(2)报告题目:Interfacing molecules with 2D materials: sophisticated structures enabling complex functions

报告摘要:
2D materials hold exceptional physical properties which render them particularly interesting as active building blocks for the emergence of disruptive technologies in sensing, opto-electronic and energy storage. However, their properties are hardly tunable. The controlled interfacing of 2D materials with molecules and assemblies thereof represents a promising strategy for imparting new properties to 2D materials, rendering them multifunctional and multiresponsive.
In my lecture I will present our recent findings on the chemical functionalization of 2D materials to engineer hybrid systems via the controlled interfacing of its two surfaces either in a symmetric or asymmetric fashion with molecular switches. In this way, additional properties have been conferred to MoS2, back phosphorous or WSe2, thereby rendering 2D material-based transistors capable to respond to as many as four different independent stimuli. Such an approach is also exploited for the development of physical sensors for medical diagnosis and health monitoring, upon use of active materials with sensitivities in the low-pressure or medium-pressure range. Example of flexible piezoresistive pressure sensors compatible with wearable technologies for digital healthcare, human-machine interfaces and robotics will be provided.
On the other hand, the covalent connection of 2D nanosheets is employed to generate 3D networks displaying improved electronic connectivity which is demonstrated through the fabrication of field-effect transistors and chemical sensors with enhanced performances.
Our modular strategies relying on the combination of 2D materials with molecules offer a simple route to generate multifunctional coatings, foams and nanocomposites with pre-programmed properties to address key global challenges in electronics and sensing applications.

嘉宾介绍

Jin-Quan Yu(余金权)

美国艺术与科学学院院士
演讲主题:20-Year Dancing with Palladium and C–H bonds: From Curiosity to Industrialization
余金权教授出生在浙江省淳安县的一个偏远山区。在华东师范大学获得化学专业学士学位,并在中国科学院上海有机化学研究所学习一年(戴立信院士指导),后加入中国科学院广州化学研究所攻读硕士学位,在萧树德教授的指导下从事萜烯化学和异相催化研究,并于1990年获得硕士学位。之后他在剑桥大学J. B. Spencer教授的指导下从事生物合成和不对称氢化反应的机理研究,并于1999年获得博士学位。2001年至2002年,他作为博士后在哈佛大学E. J. Corey教授实验室从事钯催化的烯丙基氧化反应研究。2002年回到剑桥大学,于2003年被选为剑桥大学化学系英国皇家学会研究员,开始他对不对称催化C-H键活化反应的独立研究。2004年,他担任美国布兰迪斯大学助理教授。2007年加入斯克里普斯研究所担任副教授,2010成为正教授。2012年被任命为斯克里普斯研究所化学系Frank and Bertha Hupp教授。

余金权教授是国际上C-H键活化领域最为活跃的学者。他的研究领域主要为:C-H键活化研究及其在新药研发和天然产物全合成领域的应用。他在惰性C-H键的选择性活化和重组研究方面开展了非常原创的工作,例如弱配位作用促进的金属钯催化的C-H键活化、远程C-H键活化和不对称C-H键活化等。余金权教授已在国际著名学术期刊上发表300多篇学术论文,包括二十多篇Nature,Science论文,引用次数接近6万次,h指数128。获得了ACS Cope Scholar Award(2012)、Mukaiyama Award(2012), Raymond and Beverly Sackler Prize in the Physical Sciences(2013)、Elias J. Corey Award(2014)、麦克阿瑟天才奖(2016),ACS Gabor A. Somorjai Award for Creative Research in Catalysis(2022)等诸多国际著名奖项,并于2019年当选美国艺术与科学院院士。

Paolo Samorì

欧洲科学院院士
演讲主题:Interfacing molecules with 2D materials: sophisticated structures enabling complex functions
Paolo Samorì是法国斯特拉斯堡大学( Université de Strasbourg)杰出教授,超分子科学与工程研究所(ISIS)所长,纳米化学实验室主任。他是欧洲科学院(EURASC)院士,比利时皇家科学与艺术院院士,英国皇家化学会会士。2000年在德国洪堡大学获得化学博士学位,2001年至2008年担任意大利博洛尼亚国家科学委员会(Consiglio Nazionale delle Ricerche)永久研究员,2003年至2008年任ISIS客座教授。他在纳米化学、超分子科学、材料化学和扫描探针显微镜等领域发表了440余篇论文,重点研究二维半导体材料的表界面化学,以及用于光电子、能源和传感的功能性有机/聚合物和杂化纳米材料。他曾获E-MRS青年科学家奖(1998), MRS青年科学家奖(2000), IUPAC青年化学家奖(2001), ERC启动基金(2010), 法国科学院CNRS银奖(2012), RSC表面和界面奖(2018), EURASC材料科学Blaise Pascal奖 (2018),André Collet奖 (2022)等重要奖项。现任ACS nano和Nanoscale等期刊副主编,以及Advanced Materials等期刊国际编委会成员。